INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality iilustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and contiming from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

To the Graduate school:
This dissertation entitled "Corporate Taxes and Dividend Clienteles: The Case of Public Utility Preferred stock" and written by Thomas Brice Crawford is presented to the Graduate School of Clemson University. I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a major in Applied Economics.

Accepted for the Graduate School:
Frankie O. Feller

CORPORATE TAXES AND DIVIDEND CLIENTELES:

 THE CASE OF PUBLIC UTILITY PREFERRED STOCKA Dissertation
Presented to
The Graduate school of
Clemson University
of the Requirements for the Degree
In Poctor of Philosophy
Applied Economics
Thomas Brice Crawford
August l995

ABSTRACT

Abstract

Recent research has documented the existence of abnormal returns on the day a stock trades ex-dividend. Much research is consistent with a tax hypochesis to explain this phenomena. Less explored is the effect of heterogenous income tax law on ex-dividend day returns. For example. U.S. corporations face a high domestic tax rate on capital gains and a low domestic rate on fividend income. Individuals, on the other hand, have higher tax rates on their dividend income. This dissertation searches for effects that corporate investment activity may have on ex-day returns by examining the effect of two corporate tax variables which affect corporate investors but not individual investors. Public utility preferred stock was selected for study because ir has a special corporate tax attribute and since preferred stock isolates the effect of dividend taxation Erom capital gains taxation. The period $1948-1964$ was selected because it covers a United states tax law change affecting the dividends received corporate stockholders.

One goal for this study is to characterize tax based corporate dividend clienteles and the effect of corporate investment activiey on the ex-dividend price setting process. A second goal for this project is to contribute to the understanding of the effects of corporate tax rules on the ex-dividend returns.

This work extends earlier studies on ex-day returns by developing a previously unexplored data set. It confirms work done on other data documenting an abnormal ex-day return consistent with an income tax effect. The Eindings of this research are partially consistent with corporate investors being the marginal investor for public utility preferred stock. In spite of higher yields, ex-day returns increased after the imposition of a holding period for Ehe corporate dividends received deduction. Such a holding period should reduce effective returns to corporate investors who act as marginal trader and bid away the abnormal return tax premium in the period. On the other hand, new money public utility preferred stock, which has lower effective corporate tax rates than the corporate tax rate on dividends from old money stock. are not associated with lower abnormal ex-day returns. This reault is not consistent with tax motivated corporate investors being marginal ex-day tyaders for new money preferred stock. Risk in conjectured as a factor interacting with tax costs to impact ciientele formation.

Table Page
I. Tax Hypothesis Predictions Summarized 26
II. Predicted Relationship Between other Variables and Ex-DayReturns and Price Change to Dividend27
III. Tests of Significance on All Data: Ex-Day Returns and Price Change to Dividend 37
IV. Ex-Day Returns and Price Change to Dividend Regressed on Yield 39
V. Ex-Day Returns Regressed on Days to Dividend Payment 40
VI. Ex-Day Returns Regressed on the 3-Month I-Bill Rate 41
VII. Ex-Day Returns Grouped by Year: Average Annual Yield,Average Annual Ex-Day Reeurn, Implied Daily Growth Rate.Annual Equivalents42
VIII. Mean Differences in Pre and Post Holding Period Ex-Day Returna 44
IX. Mean Differences in Pre and Post Holding Period Ex-Day Returns of Ranked Quintiles 45
X. Regression Results: Ex-Day Returns on Holding Period Dummy, Ex-Day Returns on Other Variables and Holding Period Dummy, Price Change to Dividend on Other Variables and Holding Period Dummy 47
XI. Regression Results: Ex-Day Returns on Old Money Dummy, Ex-Day Returns on Other Variables and Old Money Dummy 52
XII. Mean DifEerences in Old versus New Money Ex-Day Returns 52
XIII. Mean Differences in Old and New Money Ex-Day Returns of Ranked Quintiles 53
XIV. Regression Results: EX-Day Returns on other Variables and Holding Period/Old Versus New Money Interactive Dummy 55
XV. Test of Significance of Matched pairs of Old and New Money Ex-Day Returns and Price Change to Dividend Minus One 56
XIV. Test of Significance of Matched Paizs of Old and New Money Ex-Day Returne and Price Change to Dividend Minus One Eor Pre and Post Holding Period 57

TABLE OF CONTENTS

Page
title page i
ABSTRACT ii
LIST OF TABLES iii
CHAPTER
I. INTRODUCTION 1
II. LITERATURE REVIEW 4
Tax Law Review 4
Dividend Literature - Framing the Issue 7
The Ex-Day Price Response and Abnormal Returris 9
III. ANALYTICAL DEVELORMENT 16
Valuation Models Developed 16
Corporate Income Taxation and Valuation Models 19
IV. METHODOLOGY AND STATISTICAL TEST DESIGN 23
Research Overview and Hypothesis Development 23
Statistics 31
Types of Techniques 31
V. DATA SOURCES AND COLLECTION 35
Sample Selection and Data Availability 35
VI. DATA ANALYSIS: ABNORMAL EX-DAY RETURNS 37
Existence of Abnormal Ex-Day Returns 37
Yield Analysis and Descriptive Statistics 38
Estimation of Daily Growth Rate Returns 41
VII. DATA ANALYSIS: HOLDING PERIOD COSTS 43
Analysis Approach and Significance Testa 43
Regression Analysis 46
Further Yield Analysis 47
Summary of Holding Period Analysis 48
VIII. DATA ANALYSIS: OLD AND NEW MONEY PREEERRED 50
Analysis Approach 50
Regression Analysis 51
Significance Testa 52
Joint Hypothesis Regressions 53
Matched Pair Analysis 56
IX. CONCLUSIONS 58
X. RECOMMENDATIONS 60
APPENDICES 62
A. List of firms be Shares 63
B. Relevant U.S. Income Tax Laws 64
C. Summary of Tax Rates \& DRD Percentages 65
D. Examples of Posaible Ex-Day Price Responses 66
BIBLIOGRAPHY 67

INTRODUCTION

Abstract

Income Taxes Related to Dividend Iasues Heterogeneous tax treatment for dividend payments and capital gains among different classes of shareholders may creaic eax based dividend clienteles. In a diverse tax environment, using a single representative investor with a single tax rate for all income may lead to incorrect conclusions about the asset pricing process. Therefore. documenting the existence of dividend clienteles and characterizing them based on tax law becomes important for understanding asset pricing. The search for and clarification of dividend clienteles is the main subject of this paper.

It has been suggested that investors buy stocks which fit their own tax situation: high income investors will buy low yield and high capital gain stock while low income investors and institutional investors buy high yield shares. This paper reviews the evidence on clienteles and focuses tax law consistent with the identity of different marginal traders or investors. Since different investor groups have different tax treatments for dividends and capital gains, trading behavior by group may effect the price adjustment when a stock goes exdividend. Three groups have varying tax attributes Eor dividends and capital gains: corporations, individual investors, and institutional investors. In addition, dividend clienteles may occur due to differing marginal rates faced by investors.

Research has documented the existence of clienteles consistent with taxation of individuals. Corporate dividend clienteles, however, have been less easy to characterize. To isolate the effect of corporate shareholding on the ex-dividend day price behavior, an envizonment with significant changes in corporate tax attributes and few changes in individual tax law is needed. To meet chis objective. public utility preferred stock was aelected and data gathered over the period from 1948 to 1964 . This allowed for two important corporate tax attributes to be studied; a change in the holding period for the dividends received deduction and different tax rates for different types of public utility preferred stock.

The following literature review chapeer covers tax law and financial economics studies of the ex-day price and return studies. In the analytical development chapter, a daily model of preferred stock ex-diay returns is

developed to include different tax rates on dividend and capital gain income and other tax features studied herein. The two primary hypotheses are developed in the methodology and statistical test design chapter, together with other hypotheses, design issues, and selected test statistics. A chapter on data sources and collection describe che data set. Three data analysis chapters cover the test results. The first data analysis chapter describes the data and expands existing results to new data sets. The next chapter covers test of the holding period change. The final analysis chapter examines the tax rate differential for public utility preferred stock. Two Einal chapters draw conclusions and conjectures about the results and make recommendations for future research efforts.

Abstract

Abnormal Returna and the Ex-Day Trading Problem Two institutional charactecistics of stock payments underlie the tax rationale Eor ex-day trading behavior; differential, effectively non-tradable. tax attributes for investors, and discrete. periodic payments to owners. stock ownership on a given trading day confers a right to the owner to receive a periodic dividend. If the stock is subsequently traded. it is eraded exdividend. Ex-dividend is without the right to receive the dividend and the stock price falls from its cum-dividend (with the right to receive the dividend) trading price. According to tax adjusted asset pricing models, how much the price falls will depend on the after tax value of the dividend to the recipient. For example, if tax rate on dividends were 50 for all eraders we would expect the ex-day stock to fall from $\$ 100.00$ to $\$ 99.50$ if it paid a $\$ 1.00$ dividend and if we ignore other factors such as a small discount for delayed payment.

Pricing assets in this environment may be complicated by different tax clienteles for dividends. Tax clienteles could exist because investors face different marginal tax rates and therefore. place different value on the dividend. Since tax attributes are generally non-tradable, adjustments must be made to pre-tax returns if investors are to realize identical after-tax returns. One implication of this situation is that stock/dividend clienteles may be optimal responses for investors. That is, investors of different tax types will hoid different portfolios to maximize after-tax riak adjusted returns. If such clienteles do occur, determining which clientele provides the marginal erader becomes an important question. The next section discusses the chree groups with

different attributes for the taxation of dividends and capital gains and which may form the basis for dividend clienteles.

Current U.S. Income Tax Law Relating to
 Dividends and Capital Gains
 Individual Investors

Three groups of investors with potentially diEferent pre-tax values for capital gains and dividends can be identified; individuals, institutional investors, and corporations. Individual investors face immediate income taxation on all dividends received at tax rates up to $39.6 \neq$ (1995 ratesi. Income from appreciation lcapital gains! are taxed at a lower marginal rate of $28 t$ if the security has been held at least one yeaz. More importantly, gains are not taxed until a transaction (sale ox exchange) has been consummated. In addition, income taxation of gains can be avoided permanently upon inheritance. Capital losses are limited to $\$ 3,000$ but may be offset by capital gains and can be carried forward to future tax years without limitation. prior to 1987 , income tax law provided further tax advantage to capital gains, with rates significantly lower than the tax rate on dividends.

Due to progressive rates and other complexities in tax law, clienteles may also exist between individual investozs. For example, retirees with significant exempe income, may be in a lower tax bracket than younger investors with similar wealth. Such investors may value dividends more highly than younger investors.

Institutional Investors
Institutional investors form the second potential tax based dividend clientele. These investors face approximately che same effective marginal tax rate on capital gains as they face on dividends. Instieutional investors inciude broker/dealers in securities, certain financial intermediaries such as pension funds, and regulated investment companies also called mutual funds. Charitable and educational organiaations also hold significant endowment portfolios. They are not subject to income taxation and therefore. face similar relative tax rates on dividends and capital appreciation. Restrictions on the use of endowment capital versub endowment income, however, may create a non-tax clientele.

Eroker/dealers, which include securities brokerage firms, hold stocks and bonds as inventory. Therefore, they are genexally taxed the same corporate rate of 354 at che top bracket on dividends received and capital gains realized. Since brokers keep seock in inventory for immediate resale, eurnover is rapid and effective rates on both types of income are the same.

Qualified penaion Eunds, both defined benefit and defined contribution plans, are not taxable entities. Since all earnings are generally distributed to beneficiaries as ordinary income, distributions will be taxable at the beneficiaries top marginal rate. Consequently, there is generally no tax difference to a pension Eund between capital gains and dividends.

Mutual Eunds are not taxed on income as long as they pay almost all income to the fund owners. The income does retain its character, however, and sapital gains or losses are distinguished from dividends in tax ereatment to Eund investurs. Most mutual funds try to keep unrealized capital gains a small part of their porteolio since new Eund owners must pay tax on appreciation that they do not receive. This practice eliminates the advantage to deferral and means that mutual funds have significantly less tax advantage from deferring sale than do individual investors who can defer taxes by waiting to sell.

Corporations
Operating corporations (as distinct from institutional investors which are usually special types of corporationsl form a third potential tax clientele. On realized capital gains, corporations must pay the top marginal tax rate of 35t (1995 rates). Although like individuals, corporations may defer taxation through holding securities for later sale, special provisions in tax law prevent them from being Eormed primarily to hold securities. This prevents individuals from realizing the benefits of setting of a corporation to own stock. Dividends received from stock ownership are eligible for a 70 d dividend received Jeduction, so only 30 of dividend is taxed. With a $35 t$ rate Eor corporate income, the effective tax rate on dividends is 10.5%. To realize this tax benefit however, corporations must own the stock at least 45 days.

Insurance companies are an important shareholder of preferred stock. According to Wilson (1987), preferred stock owned by property casualty insurers was about $\$ 9$ billion at the end of 1984 and about $\$ 11$ billion was owned by life insurance companies at the same date. Insurance companies are taxed like other
operating corporations on capital gains and for purposes of the dividends received deduction.

In sumary, individual investors have che greatest relative tax advantage for capital gain income, institutional investors have no significant difference between dividends and capital gains, and corporations have a relative tax advantages for receiving income in the form of divijunde those jerome :ax differences form the basis for potential dividend clienteles and underlie issues addressed in the literature.

U.S. Income Tax_Law: $1948-1964$

The income tax for individuals was significantly expanded during the years around the second world war. Just before the war less than ten percent of income earners filed tax returns. The filing rate rose to about 55f immediately afterward. Rates were highly progressive for ordinary income such as dividends. A dividend exclusion of $\$ 50$ was enacted into law during 1954. This reduced the effective tax rate on dividend income to zero on the first $\$ 50$ of dividend income received. Capital gains realized by individuals received a sof deduction making the effective rate half the rate for dividends and creating a preference Eor Gapital gains relative to dividend income. Capital losses were limited to $\$ 1,000$ in excess of capitai gains. See 1939 Internal Revenue Code (IRC) SI17 for capital gain law and 1954 IRC 5116, 51202 and 51211 for the dividend exclusion and capital gain and loss provisions.

Corporations during this period Eaced a 25 tax rate on capital gain income. The effective rate on dividend income was determined by actual tax rates and the dividends received deduction. This deduction remained at 85 of dividends received over this period. The reaulting effective tax rate on dividend income was $15 t$ times the top marginal corporate sate. Effective for tax years beginning after 1957, corporations were required to own dividend paying stock $i 6$ days to be eligible for the dividends received deduction and therefore be eligible for the lower effective tax rate. This 15 day holding period (requiring 16 days of ownershipl was lengthened again at the end of 1984 to 45 days. For stock not owned 16 days. no dividends received deduction was available and corporations would be required to pay tax at their top marginal rate. This tax law change motivates one primary hypotheses. See 1939 IRC 526
and 1954 IRC 5243 , 5246 for the dividends received deduction. See 1939 IRC 5117 and 1954 IRC 51201 and 51211 Eor corporate capital gains and losses.

Regulated public utilities, including electricity and gas providers. telephone companies, and water suppliers, were corporations with a special tax attribute. u uring 1342 , Congress allowed public utility corporations to begin deducting a portion of the dividends paid on their preferred stock outstanding as of October 1 of that year. Such shares were called "old money" in distinction to the "new money" stock for preferred stock issued after this date. To individual shareholders, there is no distinction in tax treatment between the two types of stock. Corporate shareholders, however are required to reduce their dividends received deduction on dividends received Erom old money public utility preferred stock. This tax attribute motivates the second primary hypothesis. See 1939 IRC 526 and 1954 IRC 5244 and $\$ 247$ for public utilities Eax law.

Dividend Literature - Framing the Issue

Corporate finance has long been concerned with the effect of taxation on Eirm dividend decisions. It is puzzling to see firms pay dividends even chough such dividends are taxed to investors at higher effective rates than the capital gains which could be earned retaining and reinvesting earnings. Such phenomena has been explained as signalling (eg. Miller \& Rock 1985), as reducing agency costs on free cash flow (eg. Jensen 1986). Especially puzzling behavior occurs when firms simultaneously pay dividends and raise funds by issuing new shares. This has been described as reducing agency costs through the market discipline Erom the new issue process (Easterbrook 1984).

Regearch which spawned interest in ex-day returns focused on the larger issue of how a firm's dividend decision affects it's value. This work helped Erame and elarify the importance of tax based ex-dividend trading behavior and Aividend जiienreles.

The possibility of tax based dividend clienteles was suggested by Miller \& Modigliani in their 1961 dividend paper. Although the key point of their paper in that firms shouid be indifferent between producing capital gains (profit retention) and dividends in a world without taxes or transactions costs. they note that taxes may be a systematic source of inefficiency. The result of differing marginal tax rates amony investors could result in dividend clienteles
such that firms would have a different payout strategy depending on their clientele.

In 1974, Black and Scholes looked at the relationship between dividends and expected return and found no significant relationship. They suggested chat dividend payout may not be of first order importance in the process of firm valuation.

In their 1978 theory paper, Miller \& Scholes use the Miller and Modigliani Eramework to explore the relationship between dividends and taxes. They develop sufficient conditions for investors to be indifferent between capital gains and dividends despite differential tax treatment. They reason chat individuals can create their own leverage to shield dividenda with interest deductions on borrowed funds. So if a firm increases its dividend payout. investors can replicate the prior tax position by borrowing to purchase more shares. While this technique has the effect of increasing risk, it converts dividend income into capital gains for tax purposes.

Individual investors can risk adjust to increases (or decreases) in a firm's dividend payout by borrowing and investing the proceeds in life insurance. Since life insurance has a tax free build up and a low risk revurn, investors can get the same tax deferral without changing risk extant under higher capital gains and lower dividend payoues. In general. dividends can be converted to capital gains by torrowing and investing in tax deferred low risk entities. Miller and Scholes also mention pension funds as a similar investment to adjust portfolios without increasing risk or Eax obligation.

Litzenburger and Ramaswamy (1979) extend Erennan's (1970) tax adjusted capital asget pricing model to include certain types of leverage and suggest that there is a positive relationship between expected return and dividend yield. They also provide some evidence for the exiatence of a dividend clienteles.

Using monthly CRSP data from 1931 to 1977 and maximum likelihood techniques they estimate the coefficient on dividend yield. They find the relationship between pre-tax expected return and dividend yields to be less than one but significantly greater than zero. On average they suggest that investors require an added $\$.23$ in pre-tax return for dividenda.

In 1982, Litzenburger and Ramaswamy follow-up their 1979 study to address suggestions that dividend effects are due to information events rather than tax
effects. They cite numerous studies that report a positive coefficient for dividend effects, that is, that the dividend is relared to expected revurn. They also cite the ex-dividend excess return estimates of those studies which range from $\$.18$ to $\$.52$ on $\$ 1.00$ of retura.

They strengthen this argument by showing portfolios ranked by dividend yield have differing coefficients. Presumably, due to different tax clientelea rather than information differences.

Miller and Scholes in 1982 caution against interpreting the ex-day behavior as tax based. They suggest a problem with prior studies is that the dividend yield variable is misspecified. They separate the intra-month payments from cross-month payments and find that dividend yield coefficients are not significant when this variabie is insluded as they specified. They are unable to reject the null of a relationship between expected retum and dividend yield when their specification used. They reason that marginal traders are likely to be institutions that are indifferent between dividends and capital gains rather than individuals.

The Ex-day Price Response and Abnormal Returns

Estimating Marginal Tax Rates
In 1970 Elton \& Gruber noted that the price falls by less than the dividend paid. Concluding that dividend tax effects are causing the differential, they use this to estimate investors marginal tax rates. Their evidence suggests that the price drop with and without the dividend divided by the dividend is less than one as follows

supportive of the tax hypothesis. Using daily data and close co close prices from 1962 to 1980 they also Eind an ex-day excess return consistent with tax elienteles on dividends. They find that tax effects are reduced upon the introduction of negotiated commissions (which is widely believed to reduce trading costs). However, this reduction in excess return does not occur for preferred dividends.

They Eind that high yield securities, such as preferred stock, have negative rather than positive excess returns around the ex-day and suggest this is consistent with corporate ownership and corporations preference for dividends over capital gains.

Eades, Hess, and Kim note several other phenomena not consistent with the tax hypothesis. Non-taxable distributions show gignificant negative excess returns, while stock splits and stock dividends are significantly positive. They also find abnormal returns on the day before the ex-day and sugqest this result casts doubt on the tax hypothesis.

```
                                    Pre-Income Tax Ex-Nay Price Changeg
    Barclay (2987) looked at the ex-dividend behavior of common stocks prior to the United states Eederal income tax. He models the relationship between dividends and capital gains as
```

$$
\left(P_{t: 1}-E\left(P_{\varepsilon}\right)\right)\left(1-t_{E}\right)=D_{E}\left(1-t_{0}\right)
$$

where D. is the period t dividend, $E(P$,$) is the expected price of the security$ at period t. $P_{\text {. : }}$ is the price of the security last period, te is the tax sate on capital gains, and E, is the tax rate on ordinary income. Barclay gathered daily open and close common stock price data from 1900 to 1910 . including price around the s:-day. He found that on ex-dividend days the stock fell by the fill amount of the dividend. As other ex-day studies have done, he ranked portfolios by dividend yield and found no evidence of a tax clientele effect. The experiment is repeated on daily CRSP data between 1962 and 1985 and finds. $2 s$ do other studies, the existence of excess =eturns. He suggests chat capital gains and dividend income appear to be perfect suiostitutes in the pre-tax environment and interprets the data as supporting the income tax hypothesis that the tax causes current discounting of dividends relative to capital gains.

Trading Volume
The marginal investor (price setting investor), according to Elton and Gruber is the investor who trades for reasons unrelated to the dividend. Io identify the marginal trader. Lakonishok \& Vermaelen (1986) looked at trading volume around ex-dividend dates for cash dividends and found signifieant increases in trading volume. The increase in trading volume is more significant Eor high yield stocks and for actively traded stocks. The volume increase became more pronounced after trading commissions became negotiable in 1975 (presumed lower trading costs). They interpret these results as consistent with the hypothesis that short term traders are the marginal investor around these dates. Fhey also find negative abnormal volume around ex-dividend days for nontaxable distributions.

Abstract

Trading Costs In 1988 . Karpoff \& Walkling suggest that the dividend peralty and Eax trading are not competing explanations as auggested by Lakunishok and Vermaelen, zather are complementary to each other. They reason that investors, who are trading Eor reasons other than tax incentives (eg. portfolio rebalancing), have an inventive to time trades to maximize after tax returns (seli before the ex date and buy immedjately after). This presents opportunities for short term traders (who presumably, have no differential between marginal tax rates on dividends or capital gainsl. The ehree hypothones they examine are; ex-day returns are increasing in transactions cost, short term trading increases after May 1975 when commission rates are presumed to Eall, and short term erading will be concentrated among high yield stocks. They use daily data from crsp tapes 1965 - 1984, include only ordinary (taxable) dividends, and exclude paymeres associated with stock splits and special distributions. Iransactions costs were proxied Erom 1984 COMPUSTAT data. The four proxies for tranaactions costs are: inverse of stock price. firm market value, bid-ask spread, standard deviation of stock return. They find little evidence of a correlation between ex-day returns and transaction costs pricr to May 1975 (date of negotiated commissions) but some evidence after that date. In addition, low yield stocks show no evidence of a positive correlation between ex-day returns and transaction costs even after May 1975. Among high yield stocks however, Ehere is significant positive correlation between transactions costs and ex-day returns.

Abstract

Karpoff and Walking interpret these findings as consistent with short term Eraders affecting ex-dividend day returns for high yield stocks and after negotiated commissions. These results are consistent with the predictions that net benefits of short term trading vary directly with dividend size and vary inversely with the cost of trading.

Dividend Capture
Karpoff \& Walkiing (1990) develop the dividend capture hypothesis that. where dividend capture trading occurs, ex-day abnormal returns are eliminated up to the marginal cost of trading. Dividend capture is the short term purchase of stock for the excess dividend return. This hypothesis implies a positive relationship between ex-day returns and transactions costs, and should be increasing in dividend yield. Thus, the excess return reflects the marginal investors trading costs and not investor's marginal tax rates. Also, dividend capture trading helps explain the trading volume increases around the ex-day.

Dividend capture in NASDAQ stocks is explored by looking at cross sectional relationships between ex-day abnormal returns and transactions costs. aid-Ask spread is used to proxy for transaction cost and it is found that ex-day returns and bid-ask spreads are positively related, and the relationship increases in dividend yield. This relation does not appear to exist in non-exdividend days. Karpoff and Walkling suggest this provides evidence that ex-day abnormal returns are eliminated to the marginal cost of trading.

Time Series Properties of Ex-Day Returns
Gordon and Bradford (1980) examine the relationship between capital gains and dividends over the period between 1926 and 1978. In spite of differential dividend and capital gain prieing, they find an approximarely equal relationship. They also suggest a cyclical pattern that paralleled the business sycle.

Hess (1982) searches for dividend clienteles by examining daily data from NYSE common stocks between July 1962 and December 1979 . Forming ten portfolios on dividend yield, he rejects the clientele effect model to explain dividend yields and ex-day returns. Interestingly, forming portfolios over time. he finds that ex-day returns are not the same over time.

Eades, Hess, and Kim (1994) study the time series properties of ex-day returns. Using CRSP daily data between July 1962 and October 1989 they examine all taxable NYSE dividends and find a different pattern between high and low yield ex-day returns. Fitting an ARIMA model to the data shows low yield ex-day returns are relatively stable over the period while high yield securities exhibit more volatility. They examine changes in the tax law for capital gains holding period, changes in the capital gain exclusion, tax rate changes, and personal dividend exclusion changes. The only significant tax change was 1982 with a reduction in the top bracket and was significant only for the high yield sample. Eades, Hess and Kim did find that the 1975 and the advent of negotiated commissions marked an important change in ex-day returns. particularly for the high yield sample. They find on month T-Bill rates positively related to ex-day returns and negatively related to dividend yields. They conclude that these results are generally consistent with corporate dividend capture.

Preferred stock

Stickel (1991) studies ex-day returns and trading volume of preferred stock from 1972 to 1980 in the CRSP preferred stock file. He selected nonconvertible preferred eraded on the NYSE and AMEX. Using cumulative daily returns he suggests that his evidence is consistent with short term investors redueing the ex-day return of more liquid, higher yield stocks. Although sensitive to the definition of liquidity. less liquid stocks have higher ex-day returns.

Effect of 1986 Tax Act on Ex-Day Returns
Michaely (1991) uses 50 day returns around the ex-day over the 1986 to
1989 period (excluding october 1987) to search for tax premiums in ex-day returns due to the 1986 tax act. Using generalized least squares to control Gor heteroskedasticity arising from differing dividend yields. Michaely finds that the change in relative dividend to capital gain tax rates has no effect on the ex-day price response. This is interpreted to be consistent with a significant role for corporate traders.

Lamdin and Heimstra (1993), using CRSP data from 1982 to 1991. examine the ex-day price response of common stocks. In ecntrast to Michaely, they find
that ex-day price responses aze consistent with a change in relative tax value Eor long term investors.

Han (1994), using a longer sample period chan Michaely, also finds chat the 1986 tax reform act had no significant effect on ex-day returns of NYSE and AMEX stocks but does find a significant change in ex-day returns of NASDAQ traded shares.

Holding Period and At Risk Rules
Grammatikos (1989), using 1975 to 1985 NYSE and AMEX data on common stocks from the CRSP tapes, found a significant change from the 1984 tax act. This tax law changed the holding period from 15 to 45 days for corporate stockholders to get the dividend received deduction. The 1984 tax act also required corporations to be at risk by eliminating possible offsetting hedge positions for the dividends received deduction. He finds this resule for high yield stocks only.

Eades, Hess, and Kim (1994) suggest that this result is sensitive to the sample period selected. They find that different periods around this date give different results.

Foreign Taxes

Foreign tax environments provide for additional tests of tax hypotheses. Booch and Johnson (1984) examine Canadian stock prices over a period where four distinct tax periods are discernable. They find the ex-day price response signifiearity different from one. They do not find much evidence supporting short term investors setting ex-day prices. Canadian stocks cross listed on us exchanges have different ex-day price responses than those listed in canada alone.
In another tax envizonment, Kaplanis (1986) studies uk options and the
ex-day price change. Options are included a proxy for determining the expected
ex-day price change. Using 360 pairs of cum/ex day prices on 14 British shares
from 1979 to $i 984$ and the underlying equity options. Kaplanis found the ex-day
price predicted by options fell less than the full dividend. Also, this
predicted price response was not significantly different than the actual ex-day
price change. Kaplanis interprets these results as consistent with long run tax
clienteles and inconsistent with the short term trading hypothesis. clienteles and inconsistent with the short term trading hypothesis.

Abstract

Electric Utility Common Stocks Sartoris and Moore (1988) look at the dividend ciientele isaue by studying special dividends on the common stock of electric utility companies. A number of electric utility companies have recently issued non-taxable return of sapital dividends. These are often issued as a part of a regularly taxable dividend. They obtain survey data between 1977 and 1981 . Using the price change framework, they contend that including the non-taxable return of capital variable allows for identification of tax clienteles. They auggest the evidence is consistent with the existence of clienteles for both individual investors and corporate investors.

Abstract

Motivation For This Research That income taxes affect the ex-day return seems to have become a consensus. Researchers do not agree, however, on the role heterogeneous tax laws play in asset pricing and in the formation of dividend clienteles. Tax motivated corporate trading activity is considered important and plausible by many researchers studying ex-day price behavior. Corporate trading and investment activity as motivated by income tax law has been suggested as the explanation for much of the variation in ex-day returns. Although corporate tax attributes have been included in research (see Grammatikos (2989) and Eades. Hess, and Kim (1994), they have not been the primary focus of most work. Additionally, when a corporate tax variable has been included as an explanatory variable seudies have not controlled for important changes in individual income tax law. This research is an attempt to clarify the role corporate clienteles while holding constant the effect of individual investors.

ANALYTICAL DEVELOPMENT

Valuation Models Developed

Simple Equilibrium Conditions Between Prices and Dividends

```
Expected Return
    In equilibrium, or at least given no arbitrage opportunity, a stock going
ex-dividend implies the instantancous price change should equal the present
value of the dividend paid. In a world without taxes or other marker
imperfections, and where the dividend and initial price are known prior to the
next instantaneous price, this relation is
\[
\begin{equation*}
D=P_{\text {eum }}-E\left(P_{\text {ox }}\right) \text {. } \tag{1}
\end{equation*}
\]
where \(D\) is the present value of the dividend. \(P_{\text {eum }}\) is the price immediately before the dividend and \(E\left(P_{0 x}\right)\) is the price expected immediately after. The return form of this condition is developed by dividing each side by Peum, without income taxes, this condition is
```

$$
\begin{equation*}
D / P_{\text {eum }}=\left(P_{\text {eum }}-E\left(P_{\text {on }}\right)\right) / P_{\text {eum }} \text {. } \tag{2}
\end{equation*}
$$

The left hand side can be interpreted 2 s the dividend yield and the right hand side as the expected capital gain yield. In equilibrium, we expect the exdividend price to adjust so that this condition holds. Any single investor owning stock as it becomes ex-dividend receives the return from the left hand side of this condition (the dividend yield) plus the right hand side (the capital gain yield). This is the investor's instantaneous expected ex-dividend return before taxes. It has the limiting value of zero if the above equilibrium condition is met. The expected ex-day return $E\left(R_{\text {ex }}\right)$ is

$$
E\left(R_{-x}\right)=D / P_{\text {rum }}-\left(P_{\text {rum }}-E\left(P_{e x}\right)\right) / P_{\text {cum }}=0 .
$$

Effective Tax Rates

Adding an income tax on all income at a uniform rate t maintains the equilibrium. Investors earn the difference between the income received and the present value of the eax. This is equivalent to multiplying by (i - t) giving

$$
\begin{equation*}
D(1-E)=\left(P_{\text {cum }}-E\left(P_{-x}\right)\right)(1-E) . \tag{4}
\end{equation*}
$$

Note that imposing a single rate implies an expected price response equal to the dividend. It also implies an instantaneous expected return equal to zero. If, however, dividends were taxed at a rate different than the rate imposed on capital gains the ex-dividend price response no longer equals the dividend. Allowing for different tax rates on dividend and capital gain income alters the equilibrium condition as follows

$$
\begin{equation*}
D\left(1-t_{f i v}\right)=\left(\left(P_{\text {eum }}-E\left(P_{\text {ex }}\right)\right)\left(1-t_{\text {eq }}\right)\right. \text {. } \tag{5}
\end{equation*}
$$

where $t_{\text {av }}$ is the effective tax rate on dividend income and $t_{\sim q}$ is the effective tax rate on capital gain income. If the effective tax rate on dividend income is greater than the effective tax tate on capital income then the expected price change no longer equals the present value of the dividend. This can ba seen by using the following price response form of the above equilibrium condition

$$
\begin{equation*}
\left(1-E_{\text {div }}\right) /\left(1-E_{\text {eq }}\right)=\left(\left(P_{\text {eum }}-E\left(P_{-x}\right)\right) / D .\right. \tag{6}
\end{equation*}
$$

Maintaining this condition implies that the expected instantaneous pretax price response to dividend no longer must have a limiting value of one. This can also be written in the form of expected pre-tax ex-dividend return as $E\left(R_{-x}\right)$ was defined in (3)

$$
\begin{equation*}
E\left(R_{\text {ex }}\right)=D / P_{\text {eum }}\left(1-\left(1 t_{\text {div }}\right) /\left(1-\epsilon_{=0}\right)\right) . \tag{7}
\end{equation*}
$$

This implies that expected pre-tax ex-dividend return increases
(decreases) as the tax on dividends $t_{\text {du }}$ increases (decreases) relative to the tax on capital gains to.

This model has asaumed an instantaneous price change such that the limiting price response equals the dividend and the limiting return equals zero. The ex-dividend period actually occurs over the discrete time interval of one day and requires a discrete time model of the pricing process to be developed.

Daily Rate Price Model for Preferred stock

Yield Measurement
The value of preferred stock where $p_{\text {eum }}$ can be modeled as the price immediately before going ex-dividend, $D=$ the present value of the quarterly dividend, and r is the nominal quarterly rate of return is $P_{\text {eum }} \quad D / r$. The actual quarterly yield can be approximated from observed dividends and ex-day price to measure the actual yield as

$$
\begin{equation*}
r=\operatorname{Div} / \mathrm{P}_{\text {eum }} \tag{8}
\end{equation*}
$$

Here the actual dividend Div is substituted for the present value of the dividend D.

```
Daily Rate
    Using this expected quarteriy rate of return we can define an average
daily rate of return rg 2a
            r}=(1+r\mp@subsup{)}{}{11/0U - 1.
This modeling of the daily rate assumes a constant daily price path for preferred stock over all days such that \(P_{1}\left(1+r_{1}\right)=P_{1,1}\). However, we are interested in examining the data for a different ex-day rate of return without the rate constraint imposed by this formulation.
```


Growth Rate

To allow for an ex-day rate of return different from the growth rate we define the rate of price growth r_{7} as the rate nf price growth over each day not going ex-dividend. This is measured

$$
\begin{equation*}
=\quad=\quad\left[\left(1+r_{1}\right)^{n} /\left(1+r_{0 n}\right)\right]^{1 / 40}-1 . \tag{10}
\end{equation*}
$$

Abstract

where r_{n} is the ex-day rate of return 2 s measured in equation (3) with the observed ex-day price in place of the expected ex-day price. Note that ren as measured from observed data. includes both the daily growth rate r_{q} and an abnormal portion. We expect to observe $r_{* x}>r_{d}>r_{g}$ if the ex-day price response is less than the present value of the dividend. The signs would be reversed if the ex-day price response were greater than the present value of the dividend. The daily rate model can motivate adjuetments for growth and discounting dividends to expand the above equilibrium condition Eram an instantaneous to a discrete time equilibrium condition.

Growth Rate and Dividend Present Value Adjustments

Adjustments for one day zeturns r_{q} and the number of days until dividend payment can motivate changes in the equilibrium condition from instantaneous time to a one day time horizon. In price response form, adjusting for a daily growth rate and for n days until dividend payment gives the condition

$$
\begin{equation*}
\left(1-t_{f: v}\right) /\left(1-t_{* q}\right)=\left[\left(1+r_{y}\right) D_{\text {cum }}-E\left(P_{x x}\right)!\left(1+r_{q}\right)^{n}\right. \text { ! Div. } \tag{11}
\end{equation*}
$$

This condition can also be stated in terms of pre-tax expected returns

$$
\begin{align*}
& \text { Div } / P_{\text {eum }}\left(1-r_{7}\right)^{n}-\left(\left(1+r_{7}\right) P_{\text {eum }}-E\left(P_{\text {ox }}\right)\right) / P_{\text {eum }}= \\
& \text { Div } \left./ P_{\text {fum }}\left(1-i I-t_{\text {(iv }}\right) /\left(1-t_{\text {eq }}\right)\right) . \tag{12}
\end{align*}
$$

Abstract

Corporate Income Taration and Valuation Modeis Dividends Received Deduction

Corporations that own stock in other corporations receive a deduction for a percentage of the dividends earned. This dividends received deduction percentage (DRDt) has ranged from 85 down to 70 percent under current income tax Law. This has the effect of adjusting the tax rate for dividend income of corporations as follows


```
Tax on Dividends = (Div - Div DRDt) te = Div (1 - DRDt) tr.
```

So the coxporate tax rate on dividend income Eriv can be stated as

$$
\begin{equation*}
E_{\text {eaiv }}=(1-D R D t) c_{e} \tag{23}
\end{equation*}
$$

Using the 85 t dividends received deduction. which was the percentage in effect over the sample period of 1948 to 1964 , the tax rate on dividend income zeduces to $t_{\text {giv }}=-15 t_{z}$. Therefore, over the sample period the effective corporate tax rate on dividends is 15% of the statutory corporate rate.

Holding Period

Prior to 1958, corporations could receive the full dividends received deduction on most uS corporation's stock owned regardless of the length ori time the stock was owned. As long as the corporation was owner of record when shares went ex-dividend, the corporate shareholder could receive a deduction. Stock purchased one afternoon could be sold ex-dividend the following morning. The purchasing corporation would receive the dividend, pay a low tax on it, and earn an abnormal ex-day return.

Effective for dividends received after December 31, 1957, a fifteen day holding period was imposed Eor corporations to get the dividends received deduction and be taxed at the lower rate. This requirement has imposed at least three costa on corporate investors. First, if alternative investments are available that yield a nominal return greater than the daily grow hh rate, chen corporate stockholders receive a lower effective rate of recurn. This assumes the existence of an abnormal ex-day return and the existence of alternative investments that yield at least the daily growth rate. Second, the tax benefit is reduced if part of the investment return comes in the sorm of capital gains chrough increases in price rather than dividend income. This is a small cost relative to the others. Finally, imposing a holding period creates more interest rate risk for corporate shareholders. While risk is not specificaliy an issue for corporations, it may be relevant in treasury matters. corporations are generally considered risk neutral with respect to operating projects since investors can more efficiently perform diversification in the capital market. However, corporations select treasury investments for temporary excess cash as if they were riak averse by giving up higher expected recurns for increased liquidity and safety.

Abstract

To model the first holding period cost mentioned above, assume that corporations can trade at no cost and there are no taxes. Assume also that investments earn r_{f} on non-ex-days and $r_{* x}$ on ex-days. If corporations are required to hold stock h more days, then the quarterly return r_{7} is

$$
\begin{equation*}
r_{7}=\left(1+r_{8 x}\right)\left(1+r_{d}\right)^{90 \cdot n}\left(1+r_{q}\right)^{n}-1 . \tag{14}
\end{equation*}
$$

For $r_{d}>r_{q}$ the quarterly rate of return r_{q} is decreasing as the holding period h increases. Also, for r_{d}, r_{g} greater than 0 and less than 1 , the holding period cost is increasing as the difference between r_{d} and r_{q} increases. For a fixed nominal daily market return (fixed r_{d}). r_{q} is decreasing as $r_{0 x}$ increases. Thus the cost of imposing a holding period is increasing as the ex-day abnormal return r ox increases. Although this reasoning naively assumes that corporations forgo earning the higher return $r_{\text {ox }}$ each day, it does capture the cost of a required holding period to a corporate shareholder.

```
Old Versus New Money
As shareholders of public utility preferred stock, corporations are eligible for the full dividends received deduction (DRD). This can be written as the effective statutory tax rate on dividend income from new money shares \(r_{n}\) where
```

$$
\begin{equation*}
t_{n}=t_{r}-D R D \& t_{=}=c_{e}(1-D R D \&) \tag{26}
\end{equation*}
$$

Here the statutory income tax rate is t_{r}. Note that t_{n} is identical to the tax rate $t_{\text {div }}$ developed earlier. Corporations that own old money public utilicy preferred shares must reduce their dividends received deduction. Since issuers of those shares may deduct old money dividends in the ratio of $.14 / t_{0}$. tax law requires corporate shareholders of public utility preferred to reduce their dividends received deduction by the same ratio as the issuer's deduction. Similar to the new money shares above, the effective statutory tax rate on old money dividends received by a corporation t_{0} can be written a follows

$$
\begin{equation*}
t_{0}=t_{e}\left(1-\left(D R D t-D R D t \cdot 14 / t_{r}\right)\right)=t_{r}-\operatorname{DRDt}\left(t_{-}-14\right) \tag{17}
\end{equation*}
$$

The difference between the effective statutory tax rates on new and old money public utility preferred dividend income is

```
        tn - vo = DRD4.14.
    This difference between rates is independent of the prevailing corporate
sax rate tr. For the period unjer study, the dividends received deduction was
35% of dividends received. This reaulted in a difference between the old and
new money rates of 11.9t. Thus for example, over the period 1952 to 1963 when
the top marginal corporate tax rate was 52t, the effective statutory tax rate on
new money preferred stock dividends was 7.8t and the effective statutory rate on
dividends from old money preferred stock was 19.7t.
```


Research Overuiew and Hypothesis Development

Evidence from prior research is generally consistent with the existence of tax based clienteles and dividend taxation appears to explain a significant part of the abnormal ex-day return. Barclay (1987) found no differential return between capital gains and dividends priof to the introduction of the income tax, and Eades, Hess, and Kim (1984) showed that most of the abnormal return occurs in the close to open period as the dividend record date pasaes.

The literature, however, has not resolved which clientele is seteing prices on ex-dividend returns. As suggested by karpoff and Nalkling (lggo), it is Likely that the ex-day premium is bid away up to the marginal trangaction costs.

It has been documented that preferred stock prices Eall Eurther when going ex-dividend Elan common seock prices (Eades, Hess. Kim I984). This may indicate a corporate clientele for preferred stock since the tax code makes dividends are more valuabie than capital gains to corporate invzstors. Preferred seock of public utilities provides a way to search for the existence of and help characterize corporate clientelea while holding the influence of ocher tax based clienteles relatively constant. We can atempt to measure the changes in ex-day zeturns, if any, coincident with two tax attributes affecting only corporate shareholders.

Holding Period Hypothesis
Beginning in 1958 , corporations were required to own stock at least 16 days around the ex-day to be eligible Eor the dividends rereived deduction and associated reduced tax rates. Before 1958 , corporations had no minimum holding period. Given the existence of abnormal ex-day returna. this holding period requirement imposes an increased cost on corporate owners but not individual owners. As shown earlier. the existence of an abnormal ex-day return implien lower returns on non-ex-dividend days and implies that holding period costs are not zero. In addition, requizing a holding period imposes interest rate risk on stockholders. While corporate shareholders may not price riak in their operating projecta, it seems plausible that risk avoidance is present in treasury functions.

A test of this hypothesis is constructed by comparing data means before and after the holding period requirement was imposed. The maintained hypochesis suggests no difference between the pre and post 1958 data after the imposition of a 15 day holding period requirement. In price response form, this hypochesis is

$$
\left(P_{\text {ox. pcar }}-E\left(P_{\text {eum, poat }}\right)\right) / D_{\text {poate }}=\left(P_{\text {ex. pre }}-E\left(P_{\text {eum. prp }}\right)\right) ; D_{\text {pre }}
$$

We should not expect to reject this null hypothesis if corporate shareholders are not affecting ex-day returns. However, if corporate investors significantly impact ex-day pricing then we should be able to reject this hypothesis. Given that the ex-day rate of return exceeds the daily growtin rate, the alternative hypothesis is consistent with price setting corporate investors.

$$
\left.\left(P_{\text {sum. poet }}-E\left(P_{\text {-x.poet }}\right)\right) / D_{\text {pout }}<P_{\text {cum, pre }}-E\left(P_{\text {an.pre }}\right)\right) / D_{\text {pre }}
$$

This suggests that ex-day prices dropped a larger portion of the dividend in the earlier (pre-holding requirement) period. Finding that the ex-day price response was larger before the imposition of the corporate holding period requirement is consistent with corporate investors being the marginal trader.

Using che return form of this hyporheses changes the direction of the alternative prediction. Under the null hypothesis measured in return form, we continue to expect ex-day returns to be equal across the ehange in holding period. However, when the hypothesis is stated in return form rather than in price response form, the alternative hypothesis suggests that returns will increase in the period after the imposed holding period.

Old Versus New Money ilypothesis
As discussed earlier, utilities isauing "old money" preferred stock receive tax benefits in the form of a dividends paid deduction. Except Eor shareowning corporations, these dividends are taxed to investors like any ocher dividend. Corporations, however, must reduce their dividends received deduction which raises the effective tax rate on old money dividends. For the 1948 to 1964 period corporate shareholders paid an additional tax of $11.9 t$ on dividends from old money shares. For the years 1952 to 1963 this amounted to a top
marginal federal income tax zate of 7.8% (52t rate less 85% dividends received deduction) for dividend income. Old money dividends, however, would be taxed to corporate shareholders at a 19.7% rate.

Based on chis analysis, our null hypothesis in price response form is

$$
\left(P_{\text {eum.ald }}-E\left(P_{\text {ex,old }}\right)\right) / D_{\text {old }}=\left(P_{\text {eum.aer }}-E\left(P_{\text {ex. aev }}\right)\right) / D_{\text {gev }}
$$

where P is the price with and without the dividend, and E ia the dividend. We would not expect to reject the null hypothesis in at least two situations; if corporations are the marginal traders on the new money preferred and on the old money preferred but do not differentiate between eypes of stock, or if noncorporate investors are the marginal investor on both types of securities. We should be expected to reject the null, however, if corporations are the marginal eraders on new money preferred but not on old money preferred stock. We should also be able to reject the hypothesis if corporations are the marginal trader on both old and new money stock but differentiate between the after-tax value of the dividends. In either ease the alternative hypothesis is

$$
\left(P_{\text {=um,ald }} \cdot E\left(P_{\text {ex.ald }}\right)\right) / D_{\text {old }}<\left(P_{\text {eum, aev }}-E\left(P_{\text {ex.nev }}\right)\right) / D_{\text {nev }}
$$

This hypothesis follows from the corporate tax rate on old money dividend income exceeding that on new money. Rejecting the null hyporhesis is consistent with corporations valuing dividends of new money public utility preferred stock more than dividends of old money public preferred. and that corporations are che marginal trader Eor new money preferred. This test is a useful extension of sxisting work because it holds constant some competing explanations (such as the transactions cost hypothesis) while examining the tax hypothesis. It also could provide Eurther evidence of a corporate dividend clientele for public utility preferzed stock.

Restating this hypotheses in return form changes the direction of the alternative prediction. Under the null hypothesis we continue co expect ex-day returns to be equal across old and nes money stock. However, when the alternative hypothesis is stated in return fora rather than in price response form we expect reeurns on old money preferred to be larger than returns on new
money preferred stock. Boch primary hypotheses are summarized in the table below.

Table I
Tax Hypothesia Predictions Summarized

Additionally, the daily growth rate is compared to average ex-day returns and found to be small. Yields over the sample period were Eairly stable indicating few confounding effects due to uncertainty from interest rate change. Accordingly, no adjustment for daily growth rate is made.

Using only a one day window to measure any abnormal return may understate the abnormal return and overstate the measured growth rate. studies have suggested that abnozmal returns span several days around the ex-day. This bias, however, is againgt rejecting the null.

Time Until Dividend Eayment

As modeled in the previous chapter, differences in the period tetween tie ex-day and the dividend payment day affect the value of the dividend on the exday. We expect the ex-day return to decrease and the ex-day price response to increase in the time to dividend payment. This should be true whecher corporations or individuals are the marginal trader.

Opportunity Cost

Eades, Hess and Kim (1994) suggest that ex-day returns may be less impacted by corporate trading activity when short term intereat rates are high. They interpret this as an opportunity cost phenomena. Accordingly, the three month treasury bill rate is included as a variable. We expect ex-day returns to be positively related to chree month T-bill rates as corporations invest in treasury bills rather than stock, allowing individuals to set the price. Ex-day price responses should be negatively related to three month T-bill rates.

Dividend rield

Abstract

Several studies find a negative relationship between ex-day returns and dividend yields (eg. Eades, Hess kim, 1994). This generally is interpreted as evidence that corporate traders engage in dividend capture oniy in higher yielding stock. Dividend capture would bid down ex-day returns and increase the ex-day price response. Also mentioned in several more recent studies is the role yieid could play as a proxy for risk. Accordingly, dividend yield is included as a variable which may help explain ex-day returns.

Table II
Predicted Relationship Between Other Variables and Ex-Day Returns and Erice Change to Dividend

Dependent Variable			
	$\begin{gathered} \hline \text { Dividend Yield } \\ \text { (YIELD) } \end{gathered}$	$\begin{gathered} \text { Opportunity Cost } \\ (I-\text { BILL) } \end{gathered}$	Days to 2ayment (EMIDA)'
Ex-Day Return (REX)	inverse (-)	direct (+)	direct (+)
Price Change =0 Dividend (PCD)	direct (+)	inverse $(-)$	inverse $!-1$

```
YYIELD = Dividend/Cum Price (Div/P (um
'T-BILL = annual rate of three month U.S. Treasury bill
''gMIDA }=\mathrm{ number of days between dividend ex-day and payment date
```


isolating dividends and the effect of dividend taxation from the effect of capital gains tax rules. This is important in evaluating such factors as the change in holding period for corporate dividends received deductions.

Public utility preferred stock provides for an excellent way to search for the effect of corporate clienteles because of the special tax feature associated with this stock. As discussed earlier, old money public utility preferred stock allows for a partial deduction for dividends paid. Correspondingly, corporate shareholders must reduce their di idends received deduction. snis raises corporations effective tax rate on old money dividends received by 11.9 over the normal corporate dividend tax rate. New money preferred stock does not have this tax feature. Non-corporate shareholders leg. individuals and most institutions) have no distinction between the two types of shares.

To reduce selection bias, public utilities with both types of preferred stock (old and new money) issued and outstanding were studied. This design allows for matched pair analysis. Returns on old money stock from one Eirm. going ex-dividend on the same day and with the same payment date is matched with identical new money stock Erom the same Eirm. This controls for many of the confounding effects of risk and timing. This also protects against possible bias Erom selection differences for companies that have only one type of stock issued. However, limiting the sample to firms with both types of preferred stock may introduce selection bias against newer firms.

Only firms with both ciasses of stock listed on the Nyse were selected for study. The New York Stock Exchange listing was desirable to get consistent and available data. Since preferred stock is not Erequently traded, the NYSE listirg is a signal of market depth. More frequently traded shares should have less noise in the ex-day return.

Limiting the study to public utilities preferred is does not unduly limi= the sample to non-representative preferred stock since utilities are the primary issuer of preferred stock. Regulatory reasons, combined with tax law, are often cited as the primary motive for utilities to use preferred stock in their capital base. Brealey \& Myers (1991) suggest the lack of a deduction for dividends (unlike deductible interest) is a limitation for most firms to issue preferted stock rather than bonds. They suggest that. since tax payments are included in rate based calculations of regulated utilities, the tax disadvantage
can be passed through to customers by way of higher user rates. Accordingly, they suggest that a large fraction of the dollar value of non-convertible preferred stock is from public utiliたies.

Casual empiricism also supports the conclusion that public utilities are the primary isauer of preferred stock. For example, a Securities and Exchange Commission study of 1971-1972 new issues of preferred stock showed $\$ 4.03$ billion was preferred stock issued ify utilities out of a total annual issue registered of $\$ 4.38$. Thus approximately $52 t$ (by value) of preferred stock issued in this period was from utilities.

A second regulatory reason that public utilities igsue preferred stock relates to $S E C$ capital requirementa. The SEC stated in 1952 that the capital structure of an electric utility should not exceed 60% debt and that common stock should not be less than 30 of capital. This leaves 10% in the capital base that could be filled by preferred stock.

The time period selected of 1948 to 1964 is important to the design of the study. It was selected because of data availability and environmental stability. This period was one of relatively consistent tax laws. Interest zates were relatively stable. significant structural change (eg. depression, world war, supply shock) did not appear to occur. This allows for the study of the change in dividends received deduction holding period at che end of 1957. The year 1948 was selected as the first year of the study because of the availability of Moody's data from that date forward. Data was gathered through 1964 to provide a suzficient sample size of obsersations after the holding period change.

One relevant issue to the study of dividend taxation, but which is beyond the scope of this study, is the issue of determining which type of corporate investor is involved in setting prices. Corporate investment activity could be long run for certain companies (such as insurance companies) and they affect prices through the timing of trades. Alternatively, much recent literature has focused on corporate dividend capture that arises from short term trading activity. The teats performed in this study were not designed co distinguish between such sub-clienteles.

Statistics

```
Iest of Significance
Following statistical techniques in the literature, the test statistic
used for significance testa is
\[
x /\left(s / n^{-5}\right)
\]
This Eoliows a \(t\) distribution given that \(s\) is the sampie standard deviation and \(X\) is the mean of a normally distributed variable. In this study, \(X\) is the mean of ex-day returns \(R_{\text {ex }}\) or the mean of the price response coefficient pCD.
```


Differences of Means

The test statistic to examine differences of means is

$$
\left(X_{1}-X_{2}\right) / \text { se. }
$$

Given the normality assumption for each variable, this statistic follows a t distribution whare se is the joint sample standard error and $X_{:}$and X_{2} are the mean of the test statistics.

Estimating the joint sample standard error depends on whether the population variances are equal or not. If the variances are unequal and the sample sizes are large (as we assume for both), the standard error is
se $=\left(s_{i}{ }^{2} / n_{i}+s_{2}{ }^{2} / n_{2}\right) \cdot s$
where s : and s are the sample standard deviations of variables 1 and 2 and n : and n : are the number of observations in the sample of variables i and 2 . The return or price change variables are grouped on pre or post holding period or on old or new money stock for this analysis.

Types of Techniques

Functional Form of Dependent Variables

Returns

Two approaches to measuring the abnormal ex-day behavior have been used in the literature: calculating the ex-day return and calculating the ex-day

```
price response. Each statistic is a function of the same random variable, the
expected ex-day price. However, the ex-day return is a non-iinear
transformation of the price response measure. Accordingly, each statistic may
have different distributional properties and both are evaluated. The ex-day
return for the ith observation is calculated using the following equation
```

$$
\left.R_{:} \quad=\quad D_{:} / E_{\text {eum,t }}-\left(P_{\text {cum,t }}-P_{\text {ox.t }}\right)\right) / P_{\text {eum.: }}
$$

Price Response

Much of the literature measures and tests the price response statistic (price change to dividend) rather than calculating returns. Although the return formulation is the primary approach used in this study, the price response approach was also developed and is tested for significance using means of

$$
\text { PCD: }=\left(P_{\text {eum,: }}-P_{\left.* x_{n}\right)}\right) / D_{:}
$$

where i is the ith observation. This has been used primarily when smaller samples are necessary (see Barclay or Lamdin and Hiemstra or Sareoris and Moore).

Data Grouping

By Characteristic

As described in the hypothesis development section, the two primary attributes being studied are discrete characteristics. For testing the effect of these attributes on ex-day returns, data is grouped by distinguishing characteristic. Then means, standard deviations. and sample sizes of ex-day return groups are calculated. Data significance and difference of means tests are then applied.

By Portfolio Quintile
To raise the power of these testa, portfolios were formed from ranked
data. First, data were partitioned by characteristic and then ordered by magnitude. Five equal size portfolios were formed for each characteristic taking the smallest fifth to largest fifth. Tests of difference of means are then applied to each portfolio of the same quintile rank.

Abstract

By Matched Pair One characteristic of interest, old versus new money, allowed for the formation of a linear difference of individual observations matched by firm and dividend declaration date. Matching is possible since selected firms have boch old and new money preferred stock outstanding. Firma also use the same record and payment date for both types of stock. A specific ex-day return of a particular firm's old money stock are is from the ex-day return of the matched new money stock. The difference between the new and old money ex-day returns creates a new variable, the mean of which, is tested for significance.

Reqression

Ordinary least squares regression was applied to evaluate the relationship between the ex-day return and the other variables. Regression is the better tool for such analysis since these other variables; time until dividend payment, I-bill rate, and dividend yield are continuous variables. Dummy variables are included to evaluate the joint effects of holding period and old/new money.

Abstract

Econometyic Issues Heteroskedasticity Studies of common stock had significant variation in dividend yield and exhibit heteroskedasticity. Michaely (1991) controls for this problem by developing a generalized least squares estimator. Rather than using generalized least squares, this study controls for the problem by experimental design. Most of the preferred stock prices over the period are close to $\$ 100$ and yields over the period are quite similar relative to common stock. Accordingly, heteroskedasticity from differing yields should not be a problem in this study.

Market Model Adjustments and the Daily Growth Rate
The market model is often used to adjust daily returns of common stocks. Stickel (1991) also uses the market model to adjust preferred stock returns for common movement in calculating the cumulative abnormal returns. Gachering close to open prices obviates the need to adjust for market effects.

Since non-convertible preferred stock is a fixed income security. it earns income over time. Daily growth rate effects are evaluated.

```
Muleicollinearity
    Since yields on preferred stock incrensed during the sample period. there
is anticipated multicollinearity between yield and the holding period dummy
variable. Regressions with and without each variable consider this problem I
conjecture that little specification error is introduced by the omission of the
yield variable. This is supported by the fact that the sign of the yield
variable coefficient is not as predicted. The tax hypothesis, as develceed in
prior literature, suggests that high yields should attract corporate investors
to bid away the return premium. Empirical evidence Erom prior research suppores
this with evidence of reduced returns on high yield stocks. The results
discussed later do not find this relationship.
```


Sample Selection and Data Availability

Data Characteristica
Non-convertible preferred stock was selected Eor study due to its high yield and minimum confounding effecta of capital gains taxes. Public utility preferred stock has a special tax attribute for corporate shareholders and is the type of non-convertible preferred stock selected for study. The time period selected spanned the change in holding period requirement change taking effect at the end of 1957. Since Moody's began pubiishing the Eist of old/new money public utility preferred in 1948 , this year was selected as the first year for collection. Only companies with both old and new money preferred stock where both trpe shares are listed on the New York stock Exchange were selected. The companies selected were from Moody's Public Utility Manuals based on che existence of new money preferred stock. Determination of NYSE listing was made by examining Moody's Dividend Record for all public utility companies with new money preferred stock. A list of companies and preferred share classes is included in the appendix.

Data Collection

After determining the firms and preferred shares that matched the desired profile, dividend data was collected from Moody's Dividend Record. The dividend amount, the record date (which determines the ex-dividend date for NYSE shares). and the payment date were collected for each quarterly dividend for each class of preferred stock for each public utility firm. After gathering dividend data. price data was gathered from the New York Times. The number of potential observations was 1,852 for each dividend/share. To measure the ex-day return requires the cum and ex price of each observation. over the sample period. opening prices were published in the New Yark Times and were used for the ex-day price. The prior days closing price was collected for the cum-dividend price.

Price pairs were obtained for 433 observations, of which 412 observations were useable. Additional samples with incomplete data were gathered. These include observations where the cum price was reported but no ex-day price was reported or where the ex-day price was reported but no cum price was reported. This data set does not contain all reported prices since in instances where a
cum or ex price was not reported by the paper the related cum or ex price was not collected. These data are a random sample of prices without a cum or ex pair. There were 249 ex-day prices collected without a cum price reported by the newspaper and 230 cum prices collected without an ex-day price reported by the newspaper.

To summarize, of the 1.852 dividend/shares searched, 433 had both cum-day and ex-day prices reported, 479 of the observations with only one price reported were actually collected, and the remaining 940 dividend/shares had only one price reporeed and was therefore, not collected, or had no price reported on either day.

Abstract

Data Sets Several overlapping data sets are used in the data analysis. The full data set containing all 412 observations were used in the preliminary data analysis. A 404 element subset of this data set was prepared by eliminating eight observations from the fourth quarter of 1957 . This 404 member data set was used primarily in holding period analysis. A third data set containing 324 elements was prepared by eliminating certain shares which are part old money and part new money. The 384 member data set was used primarily in analyzing old versus new money issues. Finally, when holding periods are analyzed together with old and new money a 376 element data set was used. This is the same as the 384 element set without the eight observations Erom the $4 t h$ quarter of 1957.

Existence of Abnormal Ex-Day Returns

Replication on New Data
Recent research has documented the existence of abnormal ex-dividend day returns. This study also finds significant abnormal ex-day returns for public utility preferred stock over the sample period consistent with the tax hypothesis. The Eollowing table illustrates mean ex-day return and mean price change to dividend ratio. Ex-day returna are calculated without adjustment for the growth rate and, therefore, include both the abnormal portion and some portion of the daily growth rate. Market model adjustments to the ex-day returns are not required since close to open price data was available.

Excluding the daily growth rate does not alter the fundamental result that ex-day returns for public utility preferred stock over the ample period include a significant abnormal comporent consistent with the tax hypothesis.

This analysis reveals an ex-day return significantly different from the predicted value of zero. The t statistic of 7.4 on ex-day returns is significant. Similar results are obtained when the analysis is repeated using the price change to dividend ratio. Price change (cum price less ex-day price) is dividend by the full amount of the (undiscounted) dividend. The predicted value of one is subtracted from this ratio and its value tested Eor significance. As with the ex-day return, the ex-day price response is significantly different than one. This value can be incerpreted as an average ex-day price change of $\$.74 \mathrm{f} \cdot \mathrm{x}=\$ 1.00$ dividend.

Table iII
Tests of Significance on All Data:
Ex-Day Returns and Price Change to Dividend

	Ex-Day Return	Price Change to Dividend minus. 1
Mean	.00294165	-.259541
Std. Error	.0003959	.03489
Number	412	412
tstatistic	7.431	-7.440

Yield Analysis and Descriptive Statistics

Yield as an Explanatory Variable
It has been suggested in studies on common stock ex-day price behavior that dividend yield is an important predictor in determining abnormal ex-day returna. They reason that the attractiveness of high yields to corporate investors and the resulting effect that corporate investment activity may have on setting the price is likely reduce ex-day returns. However, since returns on non-convertible preferred stock come from dividends, with little return from capital gains, preferred stock of this study is all high yield stock. Therefore, it is less likely that yield is an important factor ir a study of dividend clienteles in preferred stock. To examine the yield hypothesis, ex-day returns were regressed on dividend yield using the following model

$$
R_{\text {vx. }}=\alpha+B Y I E L D_{1}+\epsilon_{:}
$$

The predicted sign of B is negative. That is, higher yields are expected to attract more corporate investment activity and bid away abnormal expected returns. In terms of the price change to dividend dependent variable, PCD. the Eax hypothesis predicts that the price response will be increasing in yields. and B should be positive for the following model

PCD $\quad=\alpha \quad$ - $\quad \alpha$ YELD $D_{1}+\epsilon_{:}$

From the regression results, reported in the following table. an interesting relationship emerges. Contrary to the corporate tax hypothesis. which suggests that ex-day returns should be lower if high yields attract corporate investors, we find that dividend yield is significantly and positively reiated to ex-day returns. The e statistic is 2.7 . The sign of this result is contrary to the tax hypothesis as discussed above. Repeating the process using the price change to dividend ratio as the dependent variable, reduces some of this relationship. Yield. however, continues to be significantly related to exday price behavior (t statistic $=2.2$).

One explanation for this result may be risk. If preferred stock yield proxies for risk, and if corporate treasury activities behave in a risk averse fashion, then corporate investors may prefer lower yield. Lower yield
preferred stock could then have different ex-day price than higher yield preferred stock. This is consistent with the stickel's result.

A second possibility for explaining this relationship is that yield is a proxy for the change in holding period. Since, on average, vields increased over the sample period and the holding period was imposed from 1958 to 1964. This will de considered Eurther in the next chapeer.

Table IV
Ex-Day Returns and Price Change to Dividend Regressed on Yield

Effect of Dividend Payment Dates

Variation in payment dates alters the present value of dividends. Longer cimes to payment should reduce the present value of otherwise identical dividends. To evaluate whether differing payment dates significantly relate to the level of ex-day returns, ex-day returns were regressed on the number of days between the ex-day and the payment day using the following model.

$$
R_{\text {FI. }}=\alpha+B \text { PMIDA }_{t}+\epsilon_{t}
$$

The expected sign of the B is increasing in the number of days until payment. The present value of the dividend, and therefore returna, should be less as thin time period increases.

Regressions were run on the 404 observation data set. While the coefficient sign is as predicted, the number of days until dividend payment does not significantly relace to either the ex-day recurn or the price response to dividend. The regression results for the above model. where PMTDA is the number of days between the dividend ex-day and payment day and REX is the ex-day return, are reported in the table below.

Table V
Ex-day Returns Regressed on Days to Dividend Payment

Ordinary Least Squares					
Mean of Dep. Variable	. 0030	std.	Dev. of	Var.	. 008024
Std. Error of Regr.	. 0080	Sum	E Square	siduala	.259069E-01
R - squared	. 00158	Adj	ced R -	red	-. 00091
F (1. 402)	. 6346	Erob	Value		42616
$===\sim=\sim=$ Variable Coefficient	Std. Error	Eio	rob\|ti>	Mean of X	Ster. ${ }^{\text {Sev. of }} \mathrm{X}$
Constant .167102E-02	.1674E-02	. 998	. 31890		
PMTDA .500891E-04	. $6288 \mathrm{E}-04$. 797	. 42616	25.86139	5.35981

Effect of Three Month Treasury Bill Rates

Eades. Hess and Kim (1994) suggest that abnormal ex-day returns may be related to alternative investments. They find some direct relationship between short term treasury bill rates and ex-day returns. If corporate investment activity includes more investment in preferred stock during periods when short term interest rates are low. then we would expect the ex-day return and short eerm rates so be directly related. Using the 404 observation data set, ex-day returns were regressed on chree month treasury bill rates as follows

$$
R_{* x .:}=\alpha * B \text { TBILE: } \& \epsilon_{:}
$$

We expect B to be positive for this regression since higher yield investment alternatives should reduce corporate investment activity in preferred stock. Regression resulta are reported in the table below. While these results have the predicted sign, this hypotheais is not significant for public utility preferred stock over the sample period analyzed.

Table VI
Ex-day Returns Regressed on the 3 Monch T Bill Rate

Daily Growth Rate Returns

As defined in the analytical development chapter, a preferred share's daily growth race of return is the daily geometric average return calculated Erom 91 day yield after subtracting the ex-day return. Thua, the daily growth rate should vary invergely to the ex-day return for any fixed yield. Establishing that growth rate returns are less than ex-day returns implies that imposing a holding period is costly. That is, imposing a holding period imposes below market returns over the holding period time interval. In addition, the Eollowing table shows that the daily growth rate returns are small relative the to the ex-day return. We expect the holding period cost to be increasing in chis difference.

Dividend yield is measured by dividing che cum price into the dividend. Since there are Eour dividends paid each year, this is a quarterly yield. Exday return is calculated in the usual way, ie. dividend yield less price change divided by cum price. The growth rate is the rate which solves equation (10) in the analytical development chapter. Observations are grouped by year with the number of observations shown in the second column. Annual equivalent yields are included for intuitive analysis. The annual equivalents compute the growth rate over 360 days and the ex-day return over the sour ex-dividend days. Note that the average ex-day return for this sample is over 28 times as large as the average growth rate. Requiring a holding period, therefore, imposes a cost on corporate shareholders. Note also that ex-day returns are more volatile than the growth rate returns.

Table VII
Ex-Day Returns Grouped by Year: Average Annual Yield. Average Annual Ex-Day Return, Implied Daily Growth Rate, Annual Equivalents

Quarterly Yields and Daily Returns

annual equivalents: 4 ex-days and 360 growth days

DATA ANALYSIS:
CHANGE IN HOLDING PERIOD FOR THE DIVIDENDS RECEIVED DEDUCTION

Analysis Approach

The tax hypothesis developed earlier suggests that increasing the holding period for the dividends received deduction reduces the net return to corporate stockholders. The prediction is that increasing this holding period results in less corporate investing and trading activity for stock in general, and for public utility preferred stock in particular. Reduced corporate influence in the price setting process for public uti=ity preferred stock implies higher exday returns and lower ex-day price responses. Generally, the data from this sample period is consistent with this hypothesis. We find that ex-day returns do increase in the period after the holding period is imposed. We also find that return volatility increases consistent with corporations facing increased interest rate risk.

Siqnificance Tests

Of the 412 usable observations, 8 from the fourth quarter of 1957 which cculd have spanned the change in law, were eliminated. This left a sample of 404 observations used in the following analysis.

Grouping ex-day returns by pre and post holding period and comparing means reveals an increase in mean return. This result that is consistent the tax hypothesis of less corporate preferred stock investing. Ex-day returns and price responses were computed as discussed previously. Ex-day returns were sorted into pre and post holding period groups. Statistics for each group were computed and mean ex-day returns compared. Pre-holding period ex-day returns numbered 152 observations and there were 252 ex-day returns from the post holding period. Mean ex-day returns rose from about .0020 to .0036 between the firse period (1948 to 1957) and the second period (1958 to 1964). This is weakiy significant (t statistic of 1.92). Note also that r=turn variances increased as measured in the following table by the atandard deviation of ex-day returns. This may be evidence of more selective corporate investment activity.

```
Table VIII
Mean Difference in Pre and Post Holding Period Ex-Day Returns
```


These testa were repeated using the ex-day price change to dividend ratic in place of ex-day return. Quite similar results emerged and are not reported here.

The power of this test is raised by forming portfolios based on ex-day return for pre and post ex-day holding period data. After sorting ex-day returns into the pre and post holding period groups, each was ranked by return. Five approximately equal size portfolios were formed with statistics computed for each portfolio. Portfolios of the same rank are compared using the means tests between pre and post holding period returns. Those results are reported in the table below.

Table IX
Mean Differences in Pre and Post Holding Period Ex-Day Returns of Ranked Quintiles

Portfolio quintile		Pre 4th OtE 1957	Pose 4th Otr 1957	Difference
1	Mean Std. Deviation Number Joint std. Error E statistic	$\begin{gathered} -0.006676 \\ 0.0030747 \\ 30 \end{gathered}$	$\begin{gathered} -0.00924 \\ 0.003884 \\ 50 \end{gathered}$	$\begin{array}{r} -0.00256 \\ 0.000832 \\ -3.07669 \end{array}$
2	Mean std. Deviation Number Joint Std. Error Estatistic	$\begin{gathered} -0.000619 \\ 0.000886 \\ 30 \end{gathered}$	$\begin{gathered} -0.00137 \\ 0.001332 \\ 50 \end{gathered}$	$\begin{aligned} & -0.00076 \\ & 0.000274 \\ & -2.75946 \end{aligned}$
3	Mean std. Deviation Number Joint std. Error t otatistic	0.0018217 0.0008795 30	$\begin{gathered} 0.003248 \\ 0.001907 \\ 50 \end{gathered}$	$\begin{aligned} & 0.001366 \\ & 0.00037 \\ & 3.687128 \end{aligned}$
4	Mean Std. Deviation Number Joint std. Error t etatistic	$\begin{gathered} 0.0048242 \\ 0.0010059 \\ 31 \end{gathered}$	$\begin{gathered} 0.009034 \\ 0.001881 \\ 51 \end{gathered}$	0.00421 $\begin{aligned} & 0.000367 \\ & 11.4832 \end{aligned}$
5	Mean Std. Deviation Number Joint std. Error t statistic	$\begin{aligned} & 0.0101297 \\ & 0.0028194 \\ & 31 \end{aligned}$	$\begin{gathered} 0.015778 \\ 0.003704 \\ 51 \end{gathered}$	0.005649 $\begin{aligned} & 0.000774 \\ & 7.296717 \end{aligned}$

This table shows significant mean differences for each portfolio. The t statistic for the three highest return portfolios are 3.7. 11.5. and 7.3 indicating a significant positive change in the ex-day return. The lowest return portfolios were also significant but not of the predicted sign. It was predicted that imposing a holding period seduces the effective return to corporate shareholders and provides less incentive to invest in stocks. Without considering risk, we expect that returns would increase unambiguously. If however, corporations are risk averse with reapect to their treasury investments, we would expect firms involved in short term trading to enter the market for preferred stock only when interest rate uncertainty is low. Therefore, corporate purchases of stock could increase the volatility of ex-day returns if they buy preferred stock only at certain times. This conjecture

```
rationalizes the observed result and is consistent with suggestions from other
research. See Eades, Hess, and Kim (1994) and Stickel (1991) for cheir analyais
of volatility.
The primary result is that ex-day returns increased after the imposition of a holding period on corporations. This is consistent with an overall reduction in the price setting influence of corporate shareholders.
```


Regression Analysis

Ex-day returns and the price response variable were each regressed on a holding period dummy variable and the other independent variables discussed earlier. Each of the Eollowing models were estimated using the 404 observation data set. The variable PREl is a dummy associated with the pre-holding period observations. It is expected to be negative in returns and positive in price changes. Predicted signs Eor the other variables are as discuased previously and summarized in Table II.

$$
\begin{aligned}
& R_{\text {*I. } 1}=\quad \alpha+B_{1} \text { PREI: }+\epsilon_{t} \\
& R_{\text {ex.: }}=\alpha+B_{1} \text { YIELD }_{2}+B_{2} \text { PMIDA }+B_{3} \text { TBILL }+B_{1} \text { PREI }+E_{1} \\
& \text { PCD: } \quad=\quad \alpha+B_{1} \text { YIELD: }+B_{2} \text { PMTDA }+B_{1} \text { TBILL + B, PREI + } \in
\end{aligned}
$$

As in the analysis above, the holding period dummy is related to the exday return. The t statistic of 1.9 suggests at least a weakly significant relationship between the period and the ex-day returns. Including yield as a variable subsumes the holding period dummy. The t statistic on the holding period dummy Ealls to .5 Eor the Eull model. Dividend yield however, is generally increasing over the sample period making this variable collinear with the dummy variable.

The prediction relating to the T-Bill rate is not significant.
Additionally, we suggested that higher alternative interest rates reduce the incentive of corporations to buy preferred stock. The relation between ex-day returns and interest rates is negative rather than positive as predicted. Likewise, the days to dividend payment variable is not significantly related to ex-day returns. The coefficier: is however. of the predicted sign.

Table X
Regreseion Results: Ex-Day Returns on nolding Eeriod Dummy, on Other Variables and Holding Period Dummy, and Price Response on Other Variable and Holding Period Dummy

 Variable coefficient std. Error t-ratio Prob|t|>x Mean of X std.Dev.of X

YIELD	-101.243	66.40	-1.525	.12814	.01109	.00074
PMTDA	$-.303682 E-02$	$.5571 E-02$	-.545	.58600	25.86139	6.35981

TBIEL	3.70592	6.155	.602	.54748	.02474	.00837
PRE1	$.628671 E-01$.1097	.573	.56689	.37624	.48504

Variables Defined:
REX - Ex-day Return REX - Ex-day Return
PCD - Price Change to Dividend ratio PRE1 - Holding period dummy variable, pre 4 th quarter i957=1, post $=0$ IIEDD - Individual firm yield, dividend divided by cum price PMIDA - number of days between dividend ex-day and payment day T-BILL - annual rate on three month U.S. T-Bill

Further Yield Analysis

To further compare the relationahip between dividend yield and ex-day returns the data was partitioned into pre and post holding period subsets and
ex-day return again regressed on yield. Two data sets were created to eliminating the effect of the change in holding period. Using the combined data and regressing the ex-day recurn on yields (see Table IV) found a significant relationship with a t statistic of 2.7. Partitioning the data into a pre and post holding period and regressing ex-day returns on dividend yields resulted t statistics of 1.4 and 1.5 respectively. This was due in part. but only in part. to lost power from the reduced sample size.

It seems likely that yield plays a role in effecting the ex-day price behavior of preferred stock. That role, however, appears different from the common stock studies. In those. increased yields are asaociated with more corporate share ownership. The conjecture here is that dividend yield may be a risk proxy. Accordingly, higher risk is associated with high yields attracts less corporate investment.

Summary of Holding Period Analysis

These results are generally consistent with the tax hypothesis that increases in the holding period should be associated with less corporate investment activity and higher ex-day refurns. The effect of imposing a holding period is that returns should be higher after imposing the holding period. since this raises costs to corporate investors and reduces the marginal value of the dividend. Therefore, the predicted sign of a pre holding period dummy on the ex-day return is negative and on the price change dependent variable is positive.

By forming portfolios sanked on return. significant mean differences in the ex-day returns of pre and post holding periods were distinguished. This is the primary result of this section.

The variables, number of days until dividend payment and the 3 month T Bill rate, do not appear to affect che ex-day return and were not statistically significant in any regressions of ex-day returns on those variables.

One weakness of the holding period result is that does not control other Eactors. Unlike the old and new money tests, and especially, the matched pair design, the holding period comparison is of two different time periods.

Two considerations imply that risk also affects ex-day recurns. First, after the imposition of the holding period, the variation in returns increased. This is consistent with selective corporate investment activity. Second. dividend yield is directly related to ex-day returns. Research on common stock

```
Einds an inverse relationship between yield and ex-day return. This has been
interpreted as higher yields attracting more corporate trading and bidding down
the return. The positive relationship between yields and ex-day returns for
preferred stock is consistent with yield functioning as a proxy for risk. The
relationship between yield and ex-day returns in referred stock appears to be an
area for further research.
```


Analysis Approach

The tax hypothesis predicts that otherwise identical old and new money public utility preferred will have different ex-day returns if corporations are the price setting shareholders. This follows from the higher effective tax rate to corporate owners of dividends received on old money stock as opposed to new money stock. To evaluate the tax difference, ex-day returns and price change to dividend ratios were computed and means compared across the old and new money shares.

The 412 item sample included several classes of stock which were part new and part old money. Part old money stock requires corporate stockholders to reduce theix dividends received dediction proportionate to the old/new percentage. This significantly reduces the tax distinction between share type. Accordingly, 28 observations Erom the sample were eliminated as part old money shares. On the other hand, part old money shares were included and grouped with old money if the percentage of old money was gof or more. The effecti"e tax rate on 100 t old money dividends for most of the sample period was 19.74 and for new money dividends was $7,8 \%$. The effective tax rate on part old/new money dividends if she stock is got old money falls to 18.5It. Fart old/new money shares are identified in Moody's Public Utility Manual.

As with the holding period analysis, two types of techniques were applied: regression and mean difference analysis. Ex-day returns were regressed on continuous variables and a dummy for old/new money. Tests of significance were performed on data grouped by old and new money attribute. Returns were ranked and portfolio quintiles formed for difference of means tests berween old and new money stock. Additionally, regressions with interactive dummies for joint tests of holding period and old or new money shares were performed.

Test were also performed using matched pair data. Some pubiic utilities issue both old and new money preferred shares of similar characteristics differing only in type of shares: old versus new money. This allowed for matching by firm and dividend date to control for risk and time differences. Only that subset of the sample with a single firm having both old and new money stock and going ex-dividend on the same day were selected. This resulted in 98 observations and 49 matched pairs.

In spite of the difference in corporate tax treatment between old and new money shares, no significant differences predicted by the tax hyporhesis were Eound. This lack of significance of predicted difference holds for all experimental designs including the matched pair analysis and controlling for the holding period and for both measures of the dependent variable.

One significant difference was found on the matched pais analysis for the pre holding period data. This result, however, is the opposite sign of that predicted by the tax hypothesis and is not easily reconciled with any of the received theories or the Eax hypothesis explored in this paper.

Regression Analysig

In the regression analysia, the following models were estimated using the 384 observations as discussed above. Res'. .ts are reported in the following Eable.

```
R.x.: = \alpha + B: OLD1: + \epsilon
R.x.: = \alpha + B: YIELD & + B2 PMTDA + B, TBILL + B, OLDI + \epsilon:
```

The tax hypothesis predicts that returns will be higher for old money than for new money public utility preferred stock. Thus the sign of the coefficient on the dummy variable OLDI should be poaitive. Results in the Eollowing do not show the predicted sign for this variable. As in earlier analysis, the yield variable is significant but of the opposite sign than that predicted by the tax hypothesis. Again, yield is correlated with the holding period dummy. it also appears to be consistent as a proxy for risk. Removing the 24 part old morey Btock (all at least gof old money) from the old money obserrations does not alter this general result.

Table XI
Regression Results: Ex-Day Peturns on Old Money Dummy, Ex-Day Returns on Other Variables and Old Money Dumny

Significance Testa

```
The tables which follow show test results for difference of means in exday zeturns and after grouping data into old money and new money sets. No significant difference is noted.
```

Table XII
Mean Difference in Old and New Money Ex-Day Returns

	New Money	Old Money	Difference
		0.003097	0.002737
Average Return	0.0082955	0.0079548	0.00036
Sta. Deviation	0.00829		
Number	108	252	0.0009268
Joint std. Error		0.3884184	
tstatistic			

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To raise the pown of these cests, portfolio quintiles were formed on increasing ex-day returns for each group. The 384 element sample was used which eliminate the $2 s$ part old money observations less than got old. These results also show no significant difference between old and new money ex-day returns for any of the portfolios. No difference is found when the teat is repeated using the price ch:nge to dividend ratio.

Table XIII
Mean Ditterences in ©id and New Ricsey Ex-Day Retumi= of Ranked Quintiles

Portfolio Quintile.		New Money	Old Money	Difference
1	Average Return Std. Deviation Number Joint std. Error t statistic	$\begin{gathered} -0.008576 \\ 0.0046612 \\ 21 \end{gathered}$	$\begin{gathered} -0.008359 \\ 0.0035169 \\ 50 \end{gathered}$	$\begin{array}{r} -0.000217 \\ 0.0010098 \\ -0.214658 \end{array}$
2	Average Return Std. Deviation Number Joint Std. Error t statistic	$\begin{gathered} -0.000979 \\ 0.0012007 \\ 21 \end{gathered}$	$\begin{gathered} -0.001285 \\ 0.0011813 \\ 50 \end{gathered}$	$\begin{aligned} & 0.0003056 \\ & 0.0003087 \\ & 0.9900903 \end{aligned}$
3	Average Return Std. Deviation Number Joint std. Error t statistic	$\begin{gathered} 0.0024258 \\ 0.0013438 \\ 22 \end{gathered}$	$\begin{gathered} 0.0021857 \\ 0.0012163 \\ 50 \end{gathered}$	$\begin{aligned} & 0.0002401 \\ & \text { c.0003213 } \\ & 0.747248 \end{aligned}$
4	Average Return std. Deviation Number Joint std. Error t statistic	$\begin{gathered} 0.0073866 \\ 0.0014706 \\ 22 \end{gathered}$	$\begin{gathered} 0.0067767 \\ 0.0015265 \\ 51 \end{gathered}$	$\begin{aligned} & 0.0006099 \\ & 0.0003852 \\ & 1.5832518 \end{aligned}$
5	Average Return Std. Deviations Number Joint sed. Error - statistic	$\begin{gathered} 0.014512 \\ 0.0037531 \\ 22 \end{gathered}$	$\begin{gathered} 0.0140596 \\ 2.0035642 \\ 51 \end{gathered}$	$\begin{aligned} & 0.0004524 \\ & 0.0009236 \\ & 0.4898165 \end{aligned}$

Joint Hypothesis Reqressions

Possible interaction between the holding period change and the old/new money variable were also explored. Regressions were run using all variables and joint dummy variables for the holding period and old/new money. PREOLD is a
dummy for all old money observations from pre-holding period (ie before fourth quarter 1957). POSTOLD, PRENEW, and POSTNEW are similarly defined. The model used is $2 s$ follows. The predicted sign is positive for postold and negative for RRENEW. Predicted signs for the other two joint variables are indeterminate.
$R_{0 \times 1}=\alpha+B_{1} Y I E L D_{1}+B_{2}$ PMTDA $+B_{1}$ TBILL $+B_{1}$ PREOLD $+\epsilon_{:}$ As reported earlier, the yield variable is significantly related to exday returns. It is not of the predicted aign. The tax hypothesis suggests that higher yiclds are more attractive to corporations and should have the lowest exday return. Here again the twc variables are positively related.

Table XV
Regression Results: Ex-Day Returns on Other Variables and Holding Period/Old and New Money Interactive Dummies

Matched Pair Analysis

Abstract

Matched pair analysis, that is comparing x-day price responses of the same Eizm on the same day, was possible for companies having buth new money and old money stock outstanding. Matched pair analysis provides control of other events that may distort ex-day price responses.

From the 412 usable observations, 49 matched pairs were constructed. The ex-day return of old money shares were subtracted from the ex-day return of new money shares where the ex-day return was measured on a single day for particular Eirm. The data do not support the tax hypothesis and are not consistent with corporate investors being the marginal investor in new money shares.

Table XV
Test of Significance of Matched Pairs of Old and New Money Ex-Day Returns and Erice Change to Dividend liinus One

The sample is partitioned into pre and post holding period data sets and the process repeated. The results reported in the following table susgest a change in the ex-day difference. Before the holding period new money price responses are significantly larger than those on old money. The difference disappeared after the $i 5$ day holding period requirement was imposed.

This result does not appear to have a ready explanation in tax based clienteles. While the matched pair difference between old and new money ex-day price response narrowed, the variation of differences increased in the post holding period. This is reflected in the higher standard error for the post holding period. The convergence of matched pair differences in the poat holding perir could occur if corporations reduced trading of old money stock or increased trading in new money stock. Old money public utility preferred stock tends to be older shares of stock pre-dating October 1942. No identifiable stock rights appear to account for this difference. Being more established old money preferred may have a different elientele.

Table XVI
Test of Significance of Matched Pairs of Old and New Money Price Change to Dividend Minus one for Pre and Post Holding Period

Pre	Holding Period New - Old	Post Holding Period New - Old
Average Difference	-. 38101	-. 07159
Number of pairs	22	28
Standard Exror	. 1290	. 2280
t statistic	-2.9534	-0.3152

Abstract

Price Response = Price Change / Dividend • 1

There is no clear tax based prediction why corporations would own more Old money preferred stock than new money preferred stock. Other bases for clientele formation must be explored. One conjecture to address this paradox is that public utilities have specialized investment which is funded by preferred shares. Klein. Crawford, and Alchain (1978) sugs=at that specialized investment is subject to riak from post contractual opportunistic behavior and vertical integration may be a solution to this problem. If old money preferred shares have been issued to related firms then potential post contractual opportunistic behavior may be reduced.

This work extends earlier research on ex-day returns by developing a previously unexplored data set of public utility preferred stock. The findings of this research are partially consietent with identifying the existence of corporate elienteles for public utility preferred stock. Four primayy conclusions and a conjecture are considered here. Although most reaults are stated in ex-day returns, they are robust to measuring the dependent variabie in price response form.

First, this research documents significant abnormal ex-Aay returns on a previously unexplored lata set. The data set is public utility preferred stock over the period 1943 to 1964 . The result documerted is consistent with tax motivated pricing of dividends.

Second, this research documents a significant increase in ex-day returns after the imposition of a corporate holding period for the dividends received deduction. Ex-day returns increased after the holding period despite higher yields and the introduction of a small dividend exclusion that lowered the effective tax rate for many individual investors. This result is consistent with a reduction in the marginal influence of tax motivated corporate ex-day trading.

Third, this research documents the lack of a significant excess of old money ex-day returns over ex-day returns on new money stock. Some evidence of the converse is found. Since corporations face lower effective corporate tax rates on new money stock, the tax hypothesis predicts lower ex-day returns on new money relative to c! d money stock. The evidence is not consistent with the tax hypothesis that corporations are the marginal ex-day trader on new money preferred atock.

Fourth, this research finds a positive and significant relationship between dividend yield and ex-day abnormal returns in public utility stock before controlling for the holding period change. After controlling for the holding period change, however, this result is no longer significant.

Regardless, this positive relationship is the opposite of that found in the common stock literature. Ex-day returns increasing in yield is inconsistent with corporations being the price setting investor under the received tax hypothesis. It is suggested here. however, that such a result is not inconsistent with the existence of corporate dividend elienteles under certain

```
conditions. If yield proxies for risk which corporations want to avoid, then a
positive relationship between yield and ex-day return is consistent with the
corporate dividend =lientele hypothesis.
    The research results, taken as a whole, lead to a conjecture about risk.
One conjecture arising from this work is that risk is avoided in corporate
investment activity and impacts the formation of tax based clienteles. This is
supported in two ways. First, yield is positively related to ex-day returns
rather than negatively related as mplied by the tax hypothesis. If yield is a
proxy for risk and corporations own substantial preferred stock but avoid risky
preferred stock, then ex-day prices evidence corporate influence. A second
result supporting the risk conjecture, is finding the holding period change
significant while the old versus new money difference is not. Finding the only
first to be significant implies that risk may be important. This supports the
risk conjecture because the holding period change affects both risk and expected
after tax return. The old/new money difference affects only the expected after
tax return and does not affect risk Eaced by corporate shareholders.
```


Abstract

This research provides mixed results regarding the documentation of a corporate tax clientele for public utility preferred stock. While the imposition of a tax based holding period is found to be aseociated with a change in the ex-day return, there is no similar finding for old veraus new money stock. The first result is consistent with a change in corporate clientelea for public utility prererred stock dividends.

Severai trontiers may be Eruitful for further exploration. A finer partition of interest ratea, for example quarterly ratrer than annual treasury bill rates may be used.

Additional data may als= be useful. To further study the holding period effect, data on other types of preferred stock could be gachered over tne same period. In addition. the legal holding period was lengthened from 15 days to 45 days in the 1980 's and the CRSP preferred stock tapes could be used to analyze this issue. The CRSP preferred stock tapes. which have daily data from 1972 forward, could also be used to further explore the old versus new money issue. With the coming of negotiated commissions in the mid 1970's trading costs have been reduced and make this period useful for again looking at old vergus new money stock.

Added data from the period 1965 through 1971 could be gathered to study the old versus new money problem. While the number of old money classes of stock will continue to decrease over time, such obvervations wera the majority of observations in this work and should be sufficient to provide a basis for extensions to this study into 1965 through 1971.

Tne of the interesting implications emerging from this work is that risk may be an important Eactor in dividend clienteles. Consistent with stickel's (1991) study of preferred stock. it may be that low risk preferred has a corporate clientele while higher risk (and higher yield) preferred stock does not. Proxies for risk, such as Moody's preferred stock ratings, might be a suitable risk measure. Moody's ratings are prbiished beginning in July 1975. Additional expectations based variables may also be constructed to explore this hypothesia. For example. do ex-day returns fall in periods of reiative interest rate certainty (consistent with corporate share ownership) and rise in periods of relative uncertainty.

Institutional data about the types of preferred stock owners could increase our understanding tax and non-tax clienteles. Wileon (1987) for example, suggests that insurance companies are major owners of preferred stock. Changes in insurance tax law may provide an environment for further study. Government publications of tax return data and insurance industry analysts may also have useful institutional analysis.

Institutional data may also be useful for evaluating relationships between utilities and possible preferred shareowners. This could provide evidence ajout specialized investment susceptible to post contractual opportunistic behavior relieved by vertical integration using preferred stock.

APPENDICES

Appencix A
Public Utility Companies, Classes of Preferred stock, par Value, stock Type

Appencix 3
Summary and Citations of Selected U.S. Income Iax Law

```
Corporate Taxation
    Tax Rates IRC §11 (39 Code §13.14)
        see Appendix C for top marginal Lates
    Dividends Received Dedurtion IRC 5243 (39 Code 526)
            Deduction for a percentaqe of dividends from domestic companies
            Percentage was gst fos dividends received
    Reduction of Dividends Received Deduction IRC 5244 (39 Code 526)
            On old money public utility preferred stock
    Dividends Faid Deduction IRC $247 (39 Code 526)
            Partial deduction for old money preferred dividends
            effective for old money stock in place october 1, 1.942
    Holding Period to Get Dividend Received Deduction IRC 5246
            I5 day holding period
            effective for dividends received after December 31. 1957
    Insurance Company Rules (39 Code 5201-207)
            Life insurance Companies IRC 580i-818
            Other Insurance Companies IRC 5e31-848
    Capital Gains of Corporatiors IRC 51201 (39 Code s117)
            capital gains taxed at a 25% rate
    Capital Losses IRC 51211 (39 Code 5117)
            not deductible
Taxation of Individuals
    Tax Rates IRC 51. (39 Code 511.12)
            see Appendix A for selected rates
    Dividend Exclusion IRC 51i6
            $50 exclusion of dividends received by individuals
            effective from 1954, $100 effective 1964
    Capital Gains IRC 51202 (39 Code 5117)
            capital gains receive a 504 deduction
    Capital Losaes IRC 51211 (39 Code 5117)
            limited to $1,000
Taxation of Enstitutional Investors
    Charities. Foundations and Exempt Organizarions IRC 5501-515
            exempt from income tax (39 Code 5541-563)
    Pension Fund Rules IRC 5401-418 (39 Code 53-4. 5501-515)
            exempt from income tax
            income flows through to beneficiaries who pay the tax
            usually no distinction between capital gain and ordinary income
    Mutual Fund Rules IRC 5851-855 (39 Code 5361-362)
            called Regulated Investment Companies
            generally exempt from income tax
            income flows through to fund owners who pay the tax
            capital gains and ordinary income usually distinguished
```


Appendix C

Sumary of Individual and Corporate Tax Rates

U.S Individual Income Tax Rates: Selected Brackets

Taxable Income	$\begin{aligned} & 1948- \\ & 1949 \\ & \hline \end{aligned}$	1950	1951	$\begin{aligned} & 1952- \\ & 1953 \\ & \hline \end{aligned}$	$\begin{aligned} & 1954- \\ & 1963 \end{aligned}$	1964
0-4,000	16.607	17.408	20.408	22.204	20.00%	18.007
16.000-20.000	29.92t	30.94\%	35.007	38.00%	34.007	30.50%
36,000-40,000	46.64%	48.23\%	54.007	59.004	53.00%	53.50%
88,000-100.000	63.364	65.52\%	73.008	75.008	72.007	63.50\%

Representative Bracketa for Married Filing Jointly

Barclay, Michael J. "Dividends. Taxes, and Common Stock Prices: The Ex-Dividend Day Behavior of Stock Prices Before the Income Tax." Journal of Financial Economics, Vol 19. 1987.

Black. Fisher and Myron Scholes. "The Effects of Dividend Yields and Dividend Policy on Common Stock Prices and Returns." Journal of Financial Economics, Vol 1, 1974.

Booth. L.D. and D.J. Johnaton. "The Ex-Dividend Day Behavior of Canadian stock Prices: Tax Changes and Clientele Effects." Journal of Finance, Vol. 39, No. 2, June 1984, 457-476.

Brealey, Richard A. and Stewart C. Myers. Principles of Corporate Finance, 4 th Ed. New York: MeGraw-Hill. 1991.

Copeland, Thomas E. and Weston, J. Fred. Financial Theory and Corporate policy. 3rd Ed. Reading, MA: Addison-Wesley, 1988.

Crockett, Jean and Irwin Friend. "Dividend Policy in Perspective: Can Theory Explain Behavicr?" The Review of Economics and Statistics, 1988.

Eades, Kenneth M., Patrick J. Hess, and E. Han Kim. nOn Interpreting Security Returns During the Ex-Dividend Period," Journal of Financial Economies, Vol 13. 1984.

Eades, Kenneth M., Patrick J. Hess, and E. Han Kim. "Time Series Variation in Dividend Pricing." Journal of Finance, Vol. 49, No. 5, December 1994, 1617-1638.

Easterbrook. Frank H. "Two Agency-Cost Explanations of Dividends." American Economic Review, Vol. 74. No. 4. 650-659.

Elton, E., and M. Gruber. "Marginal Stockholders Tax Rates and the Clientele Effect." Review of Economics and statistics, Vol 52, February 1970.

Gordon, Rodger H. and David F. Bradford. "Taxation and the stock Market Valuation of Capital Gains and Dividends." Journal of Public Economics, Vol 14. 1980. 109-136.

Grammatikos, Theohary. "Dividend Stripping, Risk Exposure, and the Effect of the 1984 Tax Reform Act on the Ex-Dividend Day Behavior." Journal of Business, Vol. 62. No. 2, 1989. 157-173.

Gujarati. Damodar N. Basic Econometrics. 2nd Ed. New York: McGraw-Hill. 1988.
Han. Ki C. "The Effect of the 1986 Tax Reform Act on Ex-Dividend Day Return Behavior." Journal of Financial Research. Vol.17. No. 2, Summer 1994. 175-196.
Hess. Patrick J.. "The Ex-Dividend Day Behavior of Stock Returns: Further Evidence on Tax Effects." Journal of Finance, Vol. 37. No. 2, May 1982. 445-456.

Hogg, Robert V. and Elliot A. Tanis. Probability and Statiatical Inference. 2nd Ed. New York: Macmillan. 1983.

Jensen, Michael. "Agency Costs of Free Cash Flow. Corporate Finance. and Takeovers." American Economic Review, May 1986.
Kalay, A. "The Ex-Dividend Day Behavior of Stock Prices: A Reexamination of the Clientele Effect." Journal of Finance, Vol 37, September 1982.

Kaplanis, Costas P. "Options, Taxes, and Ex-Dividend Day Eehavior." Journal of Finance, Vol. 41, No. 2, June 1986, 411-424.

Karpoff, Jonathan M. and Ralph A. Walkling. "Dividend Capture in NASDAQ Stocks." Journal of Financial Economice, Vol 28, 1990.

Karpoff, Jonathan M. and Ralph A. Walkling. "Short Term Trading Around ExDividend Days: Addirional Evidence." Journal of Einancial Economics, Vol 21, 1988.

Klein, Benjamin, Robert G. Crawford, and Armen A. Alchain. "Vertical Integration, Appropriable Rents, and the Competitive Contracting Process." Journal of Law and Econ.mics, October 1578, 297-326.

Lakonishok, Josef and Theo Vermaelen. "Tax-induced Trading Around Ex-Dividend Days." Journal of Financial Economics, Vol 16, 1936.

Lamdin, Douglas J. and Craig Hiemstra. "Ex-Dividend Day Share Price Behavior: Effects of the Tax Reform Act of 1986." Review of Economics and Statistics, 1993, 778-783.

Litzenburger, Rober H. and Krishna Ramaswamy. "The Effect of Eersonal Taxes and Dividends on Capital Asset Prices: Theory and Empirical Evidence." Journal of Financial EEOnomics, Vol 7, 1979.

Litzenburger, Robert H. and Krishna Ramaswamy. "The Effect of Dividends on Common Stock Prices: Tax Effects or information Effects." Journal of Finance, Vol 37. 1982.

Michaely, Roni. "Ex-Dividend Day Stock Price Behavior: The Case of the 1986 Tax Reform Act." Journal of Finance, Vol 46, No. 3, July 1991, 845-859.

Miller, Merton and Franco Modigliani. "Dividend Policy, Growth, and the valuation of Shares." Journal of Business, Vol 34, October 1961.

Millex, Merton and Kevin Rock. "Dividend Policy under Asymmetric Information." Journai of Finance, September 1985.

Mileer, Merton and Myron Scholes. "Dividends and Taxes." Journal of Financial Economics, Vol. 6. 1978, p333-364.
Miller, Merton and Myron Scholes. "Dividends and Taxes: Some Empirical Evidence." Journal Ef Political Economy, Vol. 90. 1982.

Moody's Investor Service. Moody's Putlic Utility Manuals. New York, Volumes 1948-1964.

Moody's Investor Service. Moody's Dividend Record. New York, Volumes 1948-1964.

New York Times. 1948 through 1964.
Pechman, Joseph A. Federal Tax Policy. 4th Ed. Washington, DC: The Brookings Institution, 1983.

Sartoris, William L. and William T. Moore. "On the Existence of a Dividend Clientele in the Market for Electric Utility Stocks." Quarterly Review of Economics and Business, Vol. 28, No. 1, Spring 1988, 88-100.

Scholes. Myron S. and Mark A. Wolfson. Taxes and Business strategy: A Planning Approach. Englewood Cliffs, NJ: Prentice Hall. 1992.

Securities and Exchange Commission. Cost of Floatation of Reqistered Issues, 1971-1972. SE1.2 F5S, Washington: December 1974.

Seidman, J.S. Seidman's ieqislative History of Federal Income an Excess Profits Tax Laws: 1953-1939. New York: Prentice-Hall. 1954.

Stickel, Scott E. "Ine Ex-Dividend Behavior of Nonconvertible Preferred Stock Returns and Trading Volume." Journal of Financial and Quantitative Analysis, Vol. 26, No. 1. March 1991. 45-61.

Van Horne, James C. Financial Manaqement and Policy. Sth Ed. Englewood Cliffs. NJ: prentice-Hall. 1980.

Wilson, Richard s. Senior Corporate Securities: Analysis and Evaluation of Bonds, Convertibles and Preferreds. Chicago: Probus Publishing, 1987.

